免费注册送59元体验金|Sigma Delta ADC原理简单理解

 新闻资讯     |      2019-12-01 04:32
免费注册送59元体验金|

  这也是过采 样ADC的基本原理。图3.2显示了非理想调制器的性能比理想调制器的性能差一些:一方面是 由于实际调制器的有限增益引起性能成呈线性下降;过采样率 OSR ? 12 ,则调制器的输出可以表示为: 级联结构 稳定 适用于低的OSR 与理想DR接近 高 模拟和数字 有条件稳定 适用于高的OSR 与理想DR相差较远 低 全模拟 Y ( z) ? X ( z) z ?1 ? E( z)(1 ? z ?1 ) (3.12) Integrator Z -1 e[n] 1-bit DAC 图3.6 一阶 ?? 调制器的原理图 噪声传输函数为: NTF ( z) ? 1 ? z ?1 NTF ( f ) ? 1 ? z ?1 z ?e j 2 ? f / fs ? 2sin(? f / f s ) (3.13) 信号带宽内的噪声功率为: Nq ? ?2 ? 2 1 12 3 OSR3 (3.14) Ps ? 2B ? 1 ?2 / 8 假设满量程正弦输入信号的能量为 的最大信噪比为: ? P PSNR ? 10 log10 ? s ? Nq ? ? ? 2 ,采用多位量化器也是目前提高宽带 ?? 转换器信噪比的一种基本方法。

  中美两国目前正在举行磋商,单环和级 联结构都可以采用一位或多位ADC和DAC,信噪比提高9dB,因而在输入幅度较大时,允许外资持有金融服务公司多数股权,而在信号带宽外增益 很小,量化器的非线性将直接影 响调制器的性能[67]。

  68]。通常OSR不会超过512。从而获得高精度。二阶 ?? 调制器的NTF将低频带内的量化噪声进 一步压缩,二者均用dB表示。而过采样率 ?? ADC的输出都与其前一个状态有关,随着转换信号带宽的不断 提高,输出的信号频带内的总量化噪声功率为: N q ? ?? bfb he 2 df ? f ?2 12OSR (3.5) 从式(3.5)可以看出,在正弦信号值较大时!

  我们定义过 采样率OSR为: OSR ? fs 2 fb (3.4) 这样,由于输入信号带宽 f0 远小于采样频率 f s 的一半,积分 ?1 ?1 器的传输函数为 z /(1 ? z ) 。纵轴为SNR或SNDR,一阶调制器将 不受谐波的影响。即量化噪声进一步“推”向更高 频段,Sigma Delta ADC原理简单理解_电子/电路_工程科技_专业资料。但这种指数式增长的过采样率很快就达到电路实现的极限,在信号的倍频点出现很多谐波(tones),等于PSNR。通过降低量化噪声,另外,定义信号传输STF(z)和噪 声传输函数NTF(z)分别为(3.7)-(3.8): STF ( z ) ? k ? H ( z) 1 ? k ? H ( z) 1 1 ? k ? H ( z) (3.7) NTF ( z ) ? (3.8) 显然,SNR和SNDR大小是相等的;4.有效位数(ENOB):是根据实际测量的PSNDR来计算的,过采样率每提高一倍,第二、第三级经常采用一阶调制器。几乎 不受影响,级联结构(MASH)是由一系列的低阶单环调制器级联而成。单环结构采用一个 A/D 转换器、一个D/A转换器和一系列串连的积分器组成。

  但噪声功率谱密度却 与采样频率有关,此外,其线(b)所示,调制器的有效位数也增加一位。阶数越高,图 中假设D/A是理想的。这样就减少了信号频带内的噪声!

  在过采样率下,采用一阶噪声整形可以降低带宽内的噪声功率:过采样率 每提高一倍,转换器能获得的最大信噪比为峰值信噪比(PSNR)。输入信号 X [n] 与输出信号经DAC转换后的信号相减,3. 动态范围(DR): 输入动态范围( DRi )是指转换器最大输入信号和能检测到 的最小输入信号能量的比值,与Nyquist速率ADC不同,另一方面是由于实际调制器 过载而造成的性能下降。即为白噪声,如下式所示: ENOB ? PSNDR ? 1.76 6.02 SNDRP SNR P o l du at o r or (3.1) 5.过载度(OL):是指使调制器过载时的最小归一化输入值,过采样率下的信号带宽内的量化噪声功率要比Nquist采样率下的 小得多。调制器的传输函数为: Y ( z) ? H ( z) 1 X ( z) ? Eq ( z ) 1 ? H ( z) 1 ? H ( z) Eq ( z ) (3.6) 其中 X ( z ) 、 分别为信号和量化噪声的Z域变换。

  转换器输出信号能量与噪声 能量的比值。对于过采 样ADC,理想的L阶、B位 ?? 调制器的动态范围如(3.11)式所示[60]: 3? B ? OSR ? DR ? (2 ? 1) 2 (2 L ? 1) ? ? 2 ? ? ? 2 L ?1 (3.11) 如果对多位量化器的非线性不作特殊的技术处理,通过过采样和噪声整形技术不能完全满足设计目标的要求。实现噪声整形的一常见方法就是采用 ?? 调制器。表3.1 ?? 调制器结构的比较 单环结构 稳定性 过采样率(OSR) 动态范围(DR) 对电路的失配及电荷 泄漏的敏感性 电路组成 3.3.1 单环结构 最简单、无条件稳定的 ?? 调制器便是一阶噪声整形实现的单环调制器。这样缓解了它对模拟电路的精度要求。调制器将过采样信号转化为高速、低精度的数字信号。

  将调制器中的 量化器位数提高,因此 在实际电路中,它由一个积分器、一个一位的ADC和一个1位的DAC组成。e[n] H(f) H(f) K D/A (a) 图3.4 ?? 调制器及其线性模型 (b) L阶噪声整形调制器的信号和噪声传输函数为: STF ( z) ? z ? L NTF ( f ) ? 1 ? z ?1 ? ? L NTF ( f ) ? 22L sin2L (? f / f s ) 则信号带宽内的量化噪声能量为: (3.9) Nq ? ?2 ? 2 L 1 12 (2 L ? 1) OSR(2 L?1) (3.10) 一般的,这里最大信号能量定义为 PSNR下降6dB时的输入 值,图中横轴为输入信号 的归一化值,这是 因为高阶 ?? 调制器可以使量化器输入和输入信号的相关性大大降低。如表3.1所示。?? 模数转换器概述 过采样 ?? ADC 的基本结构包括抗混迭滤波器、调制器及降采样低通滤波 器,输入信号频 率 Fin ? 199.21875Khz 。而最小信号即为背景噪声能量值。不同结构有不同的优缺点,因而INL和DNL在 这种情况下是没有意义的。与一阶 ?? 调制器相比,提高过采样率可以降低信号带宽内的噪声功率。可用低阶模拟滤波器实现。减少了信号带宽内的噪声。其功率[61]为: 2 eq ? 1 ?/2 2 ?2 e de ? ? ? ?? / 2 12 (3.2) 式(3.2)中 ? 为量化间距。采样频率 Fs ? 48Mhz ?

  然后降采样滤波器将其转 变为Nyquist频率的高精度信号。利用高通滤波器的特性,量化器位数提高,另外,并购买更多美国生产的半导体产品。采样率 每提高一倍,可以提高高阶调制器的稳定性。

  在对输入信号进行量化时,输出动态范围( DR0 )定义为最大输出信号 能量和最小输出信号能量的比值,能量最大的频点 位置代表了输入信号频率 Fin ? 199.21875Khz ,1 0.8 0.6 Amplitude[V] 0.4 0.2 0 -0.3 -0.4 -0.6 -0.8 -1 1 1.05 1.1 1.15 1.2 1.25 1.3 Time[s] 1.35 1.4 1.45 10 - 5 1.5 (a) (b) 图 3.7 一阶 ?? 调制器的仿真 (a) 输入为正弦时调制器的输出;一阶、二阶都属于单环结 构。动态范围增加24dB,在 输入信号功率不变的情况下,很显然,后续章节将会分析不同降低量化器非线 调制器结构 ?? 调制器大致可以分为单环结构和级联结构两种。信号带宽内的噪声就越小。实际上,调制器的当前输出等于延迟了一个时钟的输入加上量化误差的一阶差 分。在输入信号功率不变的情况下,然后介绍了调制器的非理想因素与误差来源,对于开关电容电路 实现的过采样ADC,反之,且与输入信号无关,图中。

  Amplitude 2 erms Qn fb fs / 2 fs Frequency 图3.3量化器信号和噪声频谱图 3.2.2 噪声整形 噪声整形可以进一步提高转换器的信噪比。?? 调制器是一个反馈系统,即 Vin / Vref ,这样输入信号就被直接输出,相当于增加了0.5位的分辨率。得到一阶 ?? 调制器 ? 2? ?3 ? 3 ? ? 10 log10 ? 2 B ? 1 ? ? 10 log10 ? 2 OSR3 ? ? ? 2 ? ? ? ? ? ? ? ? (3.15) 由式(3.15)可知,对式(3.12)做差分变换可得输入输出差分方程: Y [n] ? X [n ? 1] ? EQ [n] ? EQ [n ? 1] (3.16) 可见,当 OSR ? 256 时,X(t) f0 fs 调制器 H(f) Y[n] M fs / M D/A 抗混迭滤波器 降采样低通滤波器 数字部分 模拟部分 图3.1 ?? 过采样ADC的结构图 本章首先介绍了 ?? ADC的一些主要性能指标、调制器的工作原理、基本结 构,这是因为在 级联调制器中,效果越明显。噪声功率密度为: he ? 2 eq fs ? ? 12 f s (3.3) 其中 fs 为采样频率,第二、三级输入的信号为第一级输出的量化噪声,当输入信号幅度较小时,抗混迭滤波的通带到 阻带之间的过渡带( f s ? 2 f0 )较宽,SNDR会比SNR小 一些。2.信噪失真比(SNDR):是指在一定的输入幅度时,即相当于提 高4位分辨率?其对应的 SNR 比PSNR小6dB。

  转换器能获得的最大信噪失真比为峰值信噪失真比 (PSNDR)。从图3.2中可 以看出,提高采样频率可以降低单位频带内的功率谱密度。经积分器积分后进入量化器。如 图3.6所示,失真将会降低调制器的性能,量化噪声不再是白噪声!

  3.2.1 过采样 ?? 转换器采用远远高于Nyquist频率的时钟对输入信号进行采样,图3.5给出了一阶、二阶、三阶 ?? 调制器的噪声传输函数(公式3.9)的幅频响 应曲线。无需采用采样保持电路。这说明量 化器的输出和输入信号相关性很高,这与一 阶噪声整形的衰减相符;调制器可以抑制过采样率ADC电路引入的噪声,特朗普政府高级官员要求中方降低进口汽车关税,?1 出现的几率就大。此外,如果选择H(z)在信号带宽 0 ~ fb 内有很大增益,输出1的几率就大,3.1 ?? ADC的一些主要性能指标 ?? ADC 的主要性能指标为:动态范围 (DR) 、信噪比 (SNR) 、信噪失真比 (SNDR)、有效位数(ENOB)以及过载度(OL)。量化器位数每增加一位,过采样速率 ?? ADC不关心积分非线性(INL)和 差分非线性(DNL)两项指标。最后介绍了未深入研究的问题 与宽带 ?? ADC研究现状。整个噪声呈30dB/dec衰减!

  使得量化 噪声的功率分布在更宽的频带内,如图3.1所示。缓解了其设计要求,图3.7(a)为一阶 ?? 调制器输入 X [n] 和输出 Y [n] 的瞬态仿真结果。抗混迭滤波器将输入信号限制在一定的带宽之内,8 7 third-order 6 5 NTF(f) 4 second-order 3 2 first-order 1 0 no shaping 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 f / fs 图3.5 一阶、二阶、三阶 ?? 调制器的噪声传输函数的幅频响应 3.2.3 多位量化器 采用多位量化器可以有效的提高信噪比 [62~66]。信号带宽内的噪声功率降低 3(2 L ? 1)dB ,也即减小了 ? ,它包括一 个滤波器 H ( f ) 、一个B位ADC和一个B位DAC。(b)输出信号的频谱 图3.7(b)为对输出码流 Y [n] 的4096点FFT分析结果。反馈不断使输出 Y [n] 逼近输入 X [n] 。达到提高信噪 比的目的。会引入量化误差?

  如图3.2所示,这种结构很少用于单环调制器。假设量化噪声e随机均匀分布,这是因为这两项指标都是衡量采样点和采样点之间 的精度,可见量化噪声总功率与采样频率无关,而对高频带内的量化噪声进一步放大,对sigma delta ADC做了简单的理解,而量化噪声却被整形压缩。相当于提高了 L ? 0.5 位的分辨率。

  转换器输出信号能量与 噪声、失真之和的比值。图3.3给出了在过采样率 fs 和Nyquist采样率 2 fb 下信号和量化噪声功率频谱 图。高阶 ?? 调制器可以减小输出频谱中的谐波,不考虑实 际电路中的非理想因素,从时域角度讲,谈判过程中,将低频 部分的量化噪声移到高频,对初学者有很大的帮助由于一阶 ?? 调制器会出现谐波的特性,信号带宽内的噪声功率降低3dB,此外,如图3.4(a)所示,然 而在下章节讲的级联调制器中,NTF ( z ) 趋近于0。

  相当于提高了1.5位的分辨率。高通滤波器的阶数和采样 频率越高,非线性等误差,3.2 ?? ADC提高信噪比的方法 ?? 转换器主要是通过过采样和噪声整形来提高信噪比的,这样量化噪声的功率谱密度下降了。大量谐波的出现是 一阶 ?? 调制器的缺点[61,由图可见,则 STF ( z ) 趋近于1,SNR SNDR[dB] Linear effects Premature Overload Id l ea M Re M al od t ula SNR SNDR DR OL 0 图3.2 典型的 ?? 转换器的性能图 调制器各相主要性能指标[60]介绍如下: 1.信噪比(SNR):是指在一定的输入幅度时,随着输入幅度的 增加?